

ICT DAYS

An Anatomy-Aware Shared Control Approach for Assisted Teleoperation of Lung Ultrasound Examinations

Davide Nardi

Edoardo Lamon and Luigi <u>Palopoli</u>

PROBLEM and MOTIVATION

Shortage of experienced **operators** in remote areas;

Long waiting times (especially for specialists' visits);

Health risks for in-person visits (e.g. pandemics);

PROPOSED FRAMEWORK

Lack of **repeatability** and objectivity of visits.[1]

VIRTUAL BODY MODEL

We developed a **model-based approach** to detect **intercostal areas** from an RGB-D image using Skinned Multi-Person Linear Model (SMPL)[2] and Skeletal Kinematics Enveloped by a Learned body model (SKEL)[3].

RGB human segmentation

Segmented **point cloud**

SMPL pose and shape **optimization** to match the point cloud

MOTION AND INTERACTION CONTROL

The rib projections are used to create a **mesh** that represents the ribs beneath the skin, helping to limit force on the ribs and prevent image shadowing.

The mesh is enforced with a QP as **forbidden region virtual fixtures**[4] described by its planar local approximation.[5]

 $rgmin \|\Delta x - \Delta x_d\|_2,$

SKEL model **fitting** inside the SMPL

Rib cage **projection** onto the SMPL

 Δx subject to $n^{ op}\Delta x \geq -n^{ op}(x-p)$

The QP **filters** the target position variation to **meet rib constraints**, and the filtered reference is sent to an **impedance** controller[6].

$$\Lambda_d \ddot{ ilde{x}}_{ee} + D_d \dot{ ilde{x}}_{ee} + K_d ilde{x}_{ee} = F_{ee}^{ext}$$

SETUP AND EXPERIMENTS

		SINGLE SUBJECT ANTHROPON	
		MEASUREMENT	SMPL (M
Illtrasound Proba	Subject	CC	0.964
Unitasound ribbe	Jubject	WC	0.944
		SCH	0.664
Zed2		SUBJECT	CC ERROR
		1	0.013
		2	-0.081
		3	-0.017
		4	0.045
Ur3e	Haptic Interface	MEAN EXA	MINATION DUR

METRIC MEASUREMENTS [M] (10 (IPLES)

MEASURE TAPI $EAN \pm STD$) 0.955 ± 0.034 0.885 ± 0.054 0.621 ± 0.030

ENTS ERRORS [M] (SINGLE SAMPLE)

Subject	CC ERROR	WC ERROR	SCH ERROR
1	0.013	-0.001	0.040
2	-0.081	-0.057	-0.029
3	-0.017	0.015	0.024
4	0.045	0.140	-0.036

ATION [s] with and without the

CONCLUSIONS

Model-based intercostal areas detection

Reasonable reconstruction error from simple RGB-D image

Automatic way of generating virtual fixtures

mapping interface

PROPOSED SHARED CONTROL FRAMEWORK

w/VF, Mean \pm std w/o VF, Mean \pm std EXPERIMENT

2-pts, operator #1	35 ± 8	50 ± 13
4-pts, operator #2	100 ± 15	135 ± 9

Exerted forces limited to the intercostal areas

REFERENCES

[1] G. Soldati, A. Smargiassi, R. Inchingolo, D. Buonsenso, T. Perrone, D. F. Briganti, S. Perlini, E. Torri, A. Mariani, E. E. Mossolani, F. Tursi, F. Mento, and L. Demi, "Proposal for International Standardization of the Use of Lung Ultrasound for Patients With COVID-19," Journal of Ultrasound in Medicine, vol. 39, no. 7, pp. 1413–1419, 7 2020.

[2] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black, "SMPL: A skinned multi-person linear model," ACM Trans. Graphics (Proc. SIGGRAPH Asia), vol. 34, no. 6, pp. 248:1–248:16, Oct. 2015. [3] M. Keller, K. Werling, S. Shin, S. Delp, S. Pujades, C. K. Liu, and M. J. Black, "From skin to skeleton: Towards biomechanically accurate 3D digital humans," ACM Transaction on Graphics (ToG), vol. 42, no. 6, pp. 253:1-253:15, Dec. 2023.

[4] M. Selvaggio, G. A. Fontanelli, F. Ficuciello, L. Villani, and B. Siciliano, "Passive virtual fixtures adaptation in minimally invasive robotic surgery," IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3129–3136, 2018. [5] Z. Li, A. Gordon, T. Looi, J. Drake, C. Forrest, and R. H. Taylor, "Anatomical mesh-based virtual fixtures for surgical robots," in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020, pp. 3267–3273.

[6] L. Beber, E. Lamon, D. Nardi, D. Fontanelli, M. Saveriano, and L. Palopoli, "A passive variable impedance control strategy with viscoelastic parameters estimation of soft tissues for safe ultrasonography," 2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 1298–1304, 5 2024.