

Trustworthy Machine Learning for Graph Data

Stefano Teso¹ Andrea Passerini¹

¹University of Trento ²TU Wien

Background

Graph Neural Networks (GNNs) are Neural Networks for graph data: $h_b^0 = x_b \in \mathbb{R}^d$ $h_b^l = Upd^l(h_b^{l-1}, Aggr^l(\{\{h_u^{l-1} : u \in N(b)\}\}))$ Where Upd is a Neural Network and Aggr is any permutation invariant function.

Motivation

RQ1: What characterizes a good explanation? (cont.) [1]

- Previous *Necessity* metrics do not penalize useless explanations
- We propose a new necessity metric that penalizes overly large explanations

size ratio

GNNs lack interpretability, thus hindering understanding, debugging, and human trust:

Figure 1. Aristolochic acids are a family of carcinogenic, mutagenic, and nephrotoxic phytochemicals commonly found in the flowering plant family Aristolochiaceae.

As popular post-hoc methods have been found to fall short in reliably explaining trained GNNs [5, 4], new **explainable by-design** architectures have been proposed:

Figure 2. Pipeline of Self-Explainable GNNs (SEGNNs).

▲ Nonetheless, some SEGNNs are found to be more **faithful** to random explanations than to their true explanations [3].

Our contribution

We aim to study the root of this issue while providing insights into how to build more

Figure 3. Our proposed **Nec** is sensitive to the number of irrelevant items in the explanation, whereas **RFid**+ is not.

RQ2: How good are SE-GNNs? [1]

We identified some architectural design choices favoring **un-faithfulness** and fixed them:

Hard Scores (HS): give exact zero importance to information outside of R;
Explanation Readout (ER): aggregate only over R for the final prediction.

Table 3. Test set accuracy and faithfulness of some augmented SE-GNNs.

Dataset	BaMS		Motif2		Motif-Size		BBBP	
	Acc	Faith	Acc	Faith	Acc	Faith	Acc	Faith
GSAT	100 ± 00	35 ± 03	$92{\scriptstyle~\pm~01}$	61 ± 01	$90{\scriptstyle~\pm~01}$	60 ± 02	$79{\scriptstyle~\pm~04}$	27 ± 08
GSAT + ER	100 ± 00	$35{\scriptstyle~\pm03}$	$92{\scriptstyle~\pm~01}$	$63{\scriptstyle~\pm 01}$	$90{\scriptstyle~\pm~01}$	65 ± 01	$80{\scriptstyle~\pm~02}$	33 ± 04
GSAT + HS	$98{\scriptstyle~\pm 01}$	21 ± 06	53 ± 02	$24{\scriptstyle~\pm~05}$	54 ± 03	22 ± 05	71 ± 01	31 ± 09
GSAT + ER + HS	$99{\scriptstyle~\pm~01}$	$24{\scriptstyle~\pm~04}$	$57{\scriptstyle~\pm~04}$	$37{\scriptstyle~\pm~03}$	56 ± 07	$29{\scriptstyle~\pm~09}$	$73{\scriptstyle~\pm 02}$	33 ± 02
GISST	100 ± 00	25 ± 03	$92{\scriptstyle~\pm01}$	53 ± 02	$92{\scriptstyle~\pm00}$	50 ± 02	84 ± 03	23 ± 11
GISST + ER	—	—	—	—	—	—	$85{\scriptstyle~\pm~06}$	27 ± 06
GISST + HS	—	—	—	—	—	—	$83{\scriptstyle~\pm~05}$	19 ± 07
$\mathtt{GISST} + \mathtt{ER} + \mathtt{HS}$	_	_	_	_	_	_	81 ± 07	15 ± 09
RAGE	96 ± 01	33 ± 05	83 ± 02	64 ± 04	74 ± 09	63 ± 07	82 ± 01	33 ± 04
RAGE + ER	$96_{\pm 02}$	$33_{\pm 02}$	85 ± 06	66 ± 03	71 ± 09	55 ± 07	$84_{\pm 01}$	33 ± 05

reliable SEGNNs:

- **RQ1**: What characterizes a good explanation?
- **RQ2**: How good are SEGNNs?
- **RQ3**: Can we go beyond subgraph-based explanations?

RQ1: What characterizes a good explanation? [1]

Current literature measures how much the model adheres to its explanation by measuring the **faithfulness** of explanations:

- sufficient, i.e., keeping it fixed shields the model's output from changes to its complement $C=G\setminus R$

 $SUF_{d,p_R}(R) = \mathbb{E}_{G' \sim p_R}[\Delta_d(G, G')],$

- *necessary*, i.e., altering it affects the model's output even with C fixed

 $\mathsf{NEC}_{d,p_C}(R) = \mathbb{E}_{G' \sim p_C}[\Delta_d(G,G')]$

We provide a taxonomy of the current faithfulness metric:

Table 1. SUF and NEC recover existing faithfulness metrics for appropriate choices of divergence d and interventional distributions p_R and p_C .

Metric	Estimates	Divergence d	Allowed changes
Unf E:d	Suf	$KL(p_{\theta}(\cdot \mid G), p_{\theta}(\cdot \mid G'))$	zero out all irrelevant features
RFid-		$ p_{\theta}(y \mid G) - p_{\theta}(y \mid G) $	delete a random subset of irrelevant edges

RAGE + HS 97 ± 01 46 ± 03 85 ± 01 65 ± 02 78 ± 07 65 ± 09 84 ± 02 46 ± 02 RAGE + ER + HS 96 ± 01 46 ± 04 83 ± 04 64 ± 04 75 ± 08 62 ± 12 82 ± 01 43 ± 03

RQ3: Beyond subgraph-based explanations [2]

Theorem: Given a classifier g expressible as a purely existentially quantified first-order logic formula and a positive instance G of any size, then a Trivial Explanation for g(G) is also a Prime Implicant explanation for g(G).

- Subgraph-based explanations are *optimal* for motif-based tasks;
- 😥 But we do not know when we are explaining motif-based tasks;
- Section 2012 For the section optimization pick the best alternative (Occam's razor).

PS	$\mathbb{1}\{p_{\theta}(\hat{y} \mid G) = p_{\theta}(\hat{y} \mid G')\}$ multiply all irrelevant elements by relevance scores	
Fid+ Nec RFid+	$ p_{\theta}(\hat{y} \mid G) - p_{\theta}(\hat{y} \mid G') $ zero out all relevant features, delete all relevant edges " delete a random subset of relevant edges	Figure 4. Exampl
PN	$\mathbb{1}\{p_{\theta}(\hat{y} \mid G) \neq p_{\theta}(\hat{y} \mid G')\}$ multiply all relevant elements by relevance scores	

Figure 4. Examples of the proposed Dual-Channel SEGNN.

References

Metrics are not interchangeable in the sense that metric values across different metric parameters are not consistent. Table 2. Model ranking and SUF results according to different p_R .

- Split Model
 Motif2

 $p_R^{id_1}$ $p_R^{id_2}$

 LECI
 1 (81 ± 03)
 2 (82 ± 03)

 ID
 GSAT
 2 (78 ± 01)
 1 (84 ± 02)
- D GSAT $2(78 \pm 01)$ $1(84 \pm 02)$ CIGA $3(65 \pm 07)$ $3(73 \pm 06)$
- [1] Steve Azzolin, Antonio Longa, Stefano Teso, and Andrea Passerini.
 Reconsidering faithfulness in regular, self-explainable and domain invariant GNNs. 2025.
- [2] Steve Azzolin, Sagar Malhotra, Andrea Passerini, and Stefano Teso.
 Beyond topological self-explainable gnns: A formal explainability perspective, 2025.
- [3] Marc Christiansen, Lea Villadsen, Zhiqiang Zhong, Stefano Teso, and Davide Mottin. How faithful are self-explainable gnns? 2023.
- [4] Zhong Li, Simon Geisler, Yuhang Wang, Stephan Günnemann, and Matthijs van Leeuwen. Explainable graph neural networks under fire, 2024.
- [5] Antonio Longa, Steve Azzolin, Gabriele Santin, Giulia Cencetti, Pietro Lio, Bruno Lepri, and Andrea Passerini. Explaining the explainers in graph neural networks: a comparative study. 2024.

