

Unsupervised Meta-Learning via In-Context Learning

Introduction

Motivation

Learning feature representations from unlabelled datasets and transfer to novel downstream tasks when **limited** labelled **data** of unseen classes is available.

Challenges

- Meta-learning from unlabelled datasets requires an automated way to create meaningful tasks.
- Unsupervised meta-learning has usually worked well for small, in-domain datasets.
- Adaptation steps may require non-negligible time.

Our Contribution

- **mechanism** for creation task novel \bullet unsupervised meta-learning.
- An in-context learner to solve unseen test task with no adaptation.
- Training on large-scale, unlabelled dataset to \bullet generalize to **cross-domain** scenarios.
- Fast and lightweight inference.

Takeaway

Meta-learning a transformer on a large-scale, unlabelled dataset enables efficient few-shot inference with **no adaptation**, even on **unseen domains**.

See Also

Anna Vettoruzzo^{‡,1,3}, Lorenzo Braccaioli^{‡,2}, Joaquin Vanschoren³, Marlena Nowaczyk¹

Experimental Results

	<i>mini</i> Im	ageNet	CIFA	R-fs	CU	JB	Airc	eraft	Meta	-iNat
Method	5w1s	5w5s	5w1s	5w5s	5w1s	5w5s	5w1s	5w5s	5w1s	5w5s
In-Domain										
CACTUs-MAML	43.30	54.21	42.00	56.64	31.19	36.81	24.06	27.26	20.13	21.84
CACTUs-ProtoNet	48.85	62.52	50.90	64.52	33.93	44.41	26.27	30.88	27.30	29.08
UMTRA	39.93	50.73	32.93	46.13	27.06	36.6	22.40	31.73	28.96	37.12
Meta-GMVAE	55.38^\dagger	65.10^\dagger	52.02	64.18	33.59	39.09	24.83	27.60	34.22	40.23
PsCo	47.29	64.85	42.21	62.92	33.09	51.02	26.19	38.80	36.97	55.88
Cross-Domain										
PsCo	67.89	90.17	53.34	76.22	43.35	70.19	29.87	38.20	46.21	70.05
CAMeLU	76.51	92.14	61.79	80.43	65.52	80.35	33.17	39 .11	57.27	75.45
CAML (supervised)	81.75	92.31	59.44	75.27	54.63	66.81	28.92	32.06	50.86	67.07

Accuracy (%) on 5way-5shot tasks. Symbol † indicates data leakage.

Computational Resources

	Time task construction (ms)	Training time (ms/epoch)	Inference time (ms/task) 605	
PsCO	20772	4613656		
CAMeLU	1376	153000	57	

	GPU training (MiB)	CPU training (MiB)	GPU inference (MiB)	CPU inference (MiB)
PsCO	43904	20904	1630	2061
CAMeLU	6250	2588	3224	1667

Insights

----(ICT DAYS

Learning Trend