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Abstract

Despite the necessity of ensemble predictions for weather and climate, current operational
Numerical Weather Prediction (NWP) codes, as well as most other Partial Differential
Equations (PDE) solvers, compute each ensemble member sequentially, and so it does
not scale on modern supercomputers.
Data from nearby spatiotemporal points, as well as data from different nearby en-

semble members, is highly correlated, recent works suggest that weather data can be
successfully compressed with a minimal loss of information.
We plan to achieve a speedup over the sequential generation of ensemble members by

computing all members at the same time and so using the fact that they share common
information to compress them and to reduce the number of operations and communica-
tions in distributed clusters.
New machine-learning accelerators appear well-suited for this type of parallel com-

putation, and we will design our kernels to be flexible enough for both new and old
hardware.

1 Introduction

Partial Differential Equations (PDE) are ubiquitous in physical sciences, especially in
computational fluid dynamics (CFD), plasma physics and weather and climate models.
Due to the lack on exact mathematical solution for many systems beyond the simple
linear models, numerical methods have been an essential for the study of PDEs and the
practical scientific and engineering applications [?].
Due to the chaotic nature of the equations of weather, ensemble methods are used

in numerical weather prediction (NWP) to provide a probabilistic representation of the
future state of the atmosphere [?]. These methods are based on the solution of the same
set of PDEs but with slightly different initial conditions and model parametrizations.
The ensemble of solutions is then used to provide a probabilistic representation of the
future state of the atmosphere, in a Monte Carlo fashion. Due to the limitations of
compute power, only a limited number of ensemble members can be run, typically in the
order of 10-100 [?]. This limits the accuracy of the probabilistic representation of the
future state of the atmosphere.
Despite their usefulness, ensemble predictions for PDEs are used only in NWP and

each ensemble member is computed sequentially [?]. As far as we know ensemble meth-
ods are rarely used in other areas of science where PDEs are used, even in similar fields
such as CFD and plasma physics [?].
This work aims to provide a set of fundamental kernels for ensemble predictions of

PDEs to show the potentiality of parallel computing in this field.
We plan to achieve a speedup over the sequential generation of ensemble members by

computing all members at the same time and using the fact that they share common
information to compress data, as suggested by recent works [1, 2], and to reduce the
number of operations and communications in distributed clusters.
New ML accelerators seem well suited to this kind of parallel computation [?], and

so we will strive to design our kernels with enough flexibility for new and old hardware.
While ML seems to provide a potential solution to this problem with a computational
speedup, its reliability is still to be proven [?]and so it cannot be used in climate predic-
tions where the reliability is essential. Furthermore, while many ML works claim a far
superior speed than the operational methods [3] [?], there is no publicly available speed
benchmark to support this claim [?]. Notwithstanding that at the present moment all
ML models still need data from NWP models to be trained upon [?].

Atmospheric Model Schematic: PDE solver on a grid plus subgrid parameteriza-
tions.

2 State of the Art

The field of numerical weather prediction (NWP) and climate modeling has seen sig-
nificant advancements in recent years. However, several challenges remain, particularly
in the context of ensemble predictions and the efficient use of modern computational
resources. Below, we summarize the current state of the art:

• Compression of Weather Data: Recent studies have demonstrated the po-
tential of compressing weather and climate data with minimal loss of information.
Techniques such as multidimensional compression and hybrid approaches have shown
promise in reducing data size while preserving critical features [1, 2].

• Ensemble Methods: While advanced ensemble methods exist for data assimila-
tion and ordinary differential equations (ODEs), their application to partial differen-
tial equations (PDEs) remains limited. This gap highlights the need for specialized
techniques tailored to the unique challenges of PDE-based models.

• Hardware Compatibility: Fundamental computational kernels, such as General
Matrix Multiply (GEMM) and Fast Fourier Transform (FFT), are widely available
and optimized for both legacy and modern hardware. These kernels form the back-
bone of many scientific computing applications and provide a solid foundation for
further development.

3 Research Gap

Despite the progress in the field, several critical gaps remain unaddressed. These gaps
hinder the full realization of the potential benefits offered by ensemble predictions and
modern computational technologies:

• Sequential Ensemble Predictions: Current operational NWP codes compute
ensemble members sequentially, limiting scalability and efficiency on modern super-
computers.

• Limited Use of Ensemble Predictions in Other Fields: While ensemble
methods are standard in NWP, their adoption in other fields that rely on PDEs, such
as computational fluid dynamics (CFD) and plasma physics, is minimal.

• Lack of Benchmarking for ML Models: Machine learning (ML) models claim
significant speedups over traditional methods, but there is a lack of publicly available
benchmarks to validate these claims. This gap raises questions about the reliability
and applicability of ML-based approaches in critical applications.

4 Research Objectives

To address the challenges and gaps identified above, we propose the following research
objectives:

• Development of Fundamental Kernels: We aim to develop a set of fundamen-
tal kernels specifically designed for ensemble predictions of PDEs. These kernels will
leverage the inherent parallelism of modern computational architectures to achieve
significant speedups.

• Exploitation of Parallelism: By treating ensemble members as a single com-
putational entity, we will exploit the parallelism offered by modern clusters and AI
accelerators. This approach will reduce redundant computations and improve scala-
bility.

• Implementation of Compression Techniques: To further enhance efficiency,
we will integrate advanced compression techniques into our workflow. These tech-
niques will reduce data size and computational cost while maintaining accuracy and
reliability.

• Flexibility and Compatibility: Our kernels will be designed to ensure compati-
bility with both legacy and modern hardware. This includes optimizing performance
for GPUs, TPUs, and other AI accelerators while maintaining compatibility with
traditional CPUs.

• Benchmarking and Validation: We will conduct rigorous benchmarking and
validation to evaluate the performance, reliability, and scalability of our approach.
This includes comparisons with existing methods and assessments in various scenar-
ios.

5 Methodology

To address the challenges outlined in the research gap, we propose a comprehensive
methodology that combines advanced computational techniques, parallel processing, and
data compression strategies. Our approach is structured as follows:

5.1 Parallel Computation of Ensemble Members

The core idea is to compute all ensemble members simultaneously, leveraging the inher-
ent parallelism of modern supercomputers and AI accelerators. By treating the ensem-
ble members as a single computational entity, we can exploit shared information across
members to reduce redundant computations. This approach requires the development of
specialized kernels that can handle the parallel computation efficiently while maintaining
numerical stability and accuracy.

5.2 Data Compression Techniques

Recent studies have demonstrated the potential of compressing weather and climate data
with minimal loss of information. We aim to integrate these compression techniques into
our workflow to reduce the data size and computational overhead. Specifically, we will
explore methods such as:

• Lossless compression algorithms for preserving critical information.

• Lossy compression techniques with controlled error margins to balance accuracy and
efficiency.

• Hybrid approaches that combine the strengths of both lossless and lossy methods.

5.3 Kernel Design for Flexibility

To ensure compatibility with both legacy and modern hardware, we will design our
kernels to be highly flexible. This involves:

• Implementing hardware-agnostic algorithms that can adapt to different architectures.

• Optimizing performance for AI accelerators, such as GPUs and TPUs, while main-
taining compatibility with traditional CPUs.

• Incorporating modular design principles to facilitate future extensions and updates.

5.4 Benchmarking and Validation

To evaluate the effectiveness of our approach, we will conduct rigorous benchmarking
and validation. This includes:

• Comparing the performance of our kernels against existing methods, including ML-
based approaches.

• Assessing the reliability and accuracy of our solutions in various scenarios, such as
extreme weather events and long-term climate simulations.

• Analyzing the scalability of our methods on distributed systems with varying numbers
of nodes.

5.5 Exploration of Adaptive Grids and Asyn-
chronous Methods

As part of our future work, we will investigate the use of adaptive grids in time, space,
and ensemble spread to further optimize performance. Additionally, we will explore asyn-
chronous methods for PDE integration to reduce communication delays in distributed
systems. These advanced techniques have the potential to significantly enhance the
efficiency and scalability of our approach.

6 Further Work

At the moment most predictions are also done on regular grids and each step of the main
PDE integration is of the same length, although slow processes are resolved at bigger
timesteps [4].
A further line of research that we want to explore in future work is the use of adap-

tive grids in time, space and ensemble spread to further reduce the computational cost.
While adaptive spatial grids are used in many CFD applications [5], adaptive time grids
are less common [?]and adaptive ensemble spread grids are not used at all.
Since we need to use a machine with multiple nodes due to the size of the problem, it

could be interesting to explore asynchronous methods for the integration of the PDEs,
as they could provide a further speedup by reducing communication delays [6, 7, 8]
Methods for integrating Fokker-Planck equation (the equation that describes the evo-

lution of a probability density under an ODE) could also be interesting to explore [9, 10].
While it does not exist a useful equivalent for PDEs [11], we may use it on the discretized
version of the PDEs, which is in fact a set of ODEs.
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